

CAIE Chemistry A-level

Topic 6 - Electrochemistry

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

What are the rules for assigning oxidation states?

What are the rules for assigning oxidation states?

Element	Oxidation number
Group 1 metals	+1
Group 2 metals	+2
Oxygen	-2 (usually)
Hydrogen	+1 (usually)
Fluorine	-1
Oxygen with fluorine	+2

- Uncombined elements have an oxidation state of 0.
- In neutral compounds, the sum of oxidation states is 0.
- The oxidation state of common basic ions is equal to their charge.
- For highly electronegative species, the more electronegative element is negative.

What are some exceptions to the rule for oxidation states?

What are some exceptions to the rule for oxidation states?

- Hydrogen in metal hydrides has an oxidation state of -1 (instead of +1).
- Oxygen in peroxides has an oxidation state of -1 (instead of -2).

Calculate the oxidation state of sulfur in

Calculate the oxidation state of sulfur in H₂SO₄

- Oxidation state of oxygen = -24 oxygen atoms so $-2 \times 4 = -8$
- Oxidation state of hydrogen = +1 2 hydrogen atoms so $+1 \times 2 = +2$
- Overall charge on the compound is 0 so the sum of oxidation states must equal 0.
- X is the oxidation state of sulfur:

$$+2 + X + -8 = 0$$

 $X - 6 = 0$
 $X = 6$

Oxidation state of S in H_2SO_4 is +6.

What is oxidation?

What is oxidation?

Oxidation involves the loss of electrons.

Leads to an increase in oxidation number.

What is reduction?

What is reduction?

Reduction involves the gain of electrons.

Leads to a decrease in oxidation number.

What is disproportionation?

What is disproportionation?

A reaction when a substance is simultaneously oxidised and reduced to form two different products with different oxidation states.

What is an oxidising agent?

What is an oxidising agent?

A species which brings about oxidation by gaining electrons. The oxidising agent is itself reduced.

What is a reducing agent?

What is a reducing agent?

A species which brings about reduction by losing electrons. The reducing agent is itself oxidised.

